An analytical model for gas overpressure in slug-driven explosions: Insights into Strombolian volcanic eruptions
نویسندگان
چکیده
[1] Strombolian eruptions, common at basaltic volcanoes, are mildly explosive events that are driven by a large bubble of magmatic gas (a slug) rising up the conduit and bursting at the surface. Gas overpressure within the bursting slug governs explosion dynamics and vigor and is the main factor controlling associated acoustic and seismic signals. We present a theoretical investigation of slug overpressure based on magma-static and geometric considerations and develop a set of equations that can be used to calculate the overpressure in a slug when it bursts, slug length at burst, and the depth at which the burst process begins. We find that burst overpressure is controlled by two dimensionless parameters: V′, which represents the amount of gas in the slug, and A′, which represents the thickness of the film of magma that falls around the rising slug. Burst overpressure increases nonlinearly as V′ and A′ increase. We consider two eruptive scenarios: (1) the “standard model,” in which magma remains confined to the vent during slug expansion, and (2) the “overflow model,” in which slug expansion is associated with lava effusion, as occasionally observed in the field. We find that slug overpressure is higher for the overflow model by a factor of 1.2–2.4. Applying our model to typical Strombolian eruptions at Stromboli, we find that the transition from passive degassing to explosive bursting occurs for slugs with volume >24–230 m, depending on magma viscosity and conduit diameter, and that at burst, a typical Strombolian slug (with a volume of 100–1000 m) has an internal gas pressure of 1–5 bars and a length of 13–120 m. We compare model predictions with field data from Stromboli for low-energy “puffers,” mildly explosive Strombolian eruptions, and the violently explosive 5 April 2003 paroxysm. We find that model predictions are consistent with field observations across this broad spectrum of eruptive styles, suggesting a common slug-driven mechanism; we propose that paroxysms are driven by unusually large slugs (large V′).
منابع مشابه
Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity.
Strombolian-type eruptive activity, common at many volcanoes, consists of regular explosions driven by the bursting of gas slugs that rise faster than surrounding magma. Explosion quakes associated with this activity are usually localized at shallow depth; however, where and how slugs actually form remain poorly constrained. We used spectroscopic measurements performed during both quiescent deg...
متن کاملDynamics of magma ascent in the volcanic conduit
This chapter presents the various mechanisms and processes that come into play within the volcanic conduit for a broad range of effusive and dry explosive volcanic eruptions. Decompression during magma ascent causes volatiles to exsolve and form bubbles containing a supercritical fluid phase. Viscous magmas, such as rhyolite or crystal-rich magmas, do not allow bubbles to ascend buoyantly and m...
متن کاملStronger or longer: Discriminating between Hawaiian and Strombolian eruption styles
The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive time scale, with the duration of Hawaiian fountaini...
متن کاملConduit dynamics and post explosion degassing on Stromboli: A combined UV camera and numerical modeling treatment
Recent gas flux measurements have shown that Strombolian explosions are often followed by periods of elevated flux, or "gas codas," with durations of order a minute. Here we present UV camera data from 200 events recorded at Stromboli volcano to constrain the nature of these codas for the first time, providing estimates for combined explosion plus coda SO2 masses of ≈18-225 kg. Numerical simula...
متن کاملSalt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent
A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the ...
متن کامل